Current Situation and Integration Potential in Transport Area in Japan

Hitoshi HAYASHIYA
Takashi SUZUKI
Hitoshi NAKAJIMA

(East Japan Railway Company)
1 Introduction
2 Electric Energy Utilization in Railway Transportation
3 Utilization of Regenerative Energy
4 Examples of Other Projects
5 Conclusions
Japan National Railway was privatized and divided into 6 railway company in 1987.
Voltage categories of TPS in Japan

High Speed Railway
- A.C. 25kV

Conventional Railway
- D.C. 1.5kV
- A.C. 20kV

[Map of Japan showing voltage categories and train routes]
CO2 emission from each transportation mode

- Car: 172g-CO2
- Airplane: 111g-CO2
- Bus: 51g-CO2
- Railway: 18g-CO2

Reported by Ministry of Land, Infrastructure, Transport and Tourism in 2007
Share in Transportation

Ratio of Each Transportation Mode (passenger km)
Total Energy Consumption is not Small

ENERGY CONSUMPTION AND TRANSPORTATION MARKET SHARE

(FY2012 results)

- **Automobiles**: 65.8%
- **Railways**: 29.0%
- **Airways**: 5.2%

MARKET SHARE BY PASSENGER TRANSPORTATION MODE

ENERGY CONSUMPTION BY PASSENGER TRANSPORTATION MODE

- **Automobiles**: 90.6%
- **Railways**: 3.4%
- **Airways**: 6.0%

Source: Compiled based on data from The Energy Conservation Center, Japan (ECCJ)'s Handbook of Energy & Economic Statistics in Japan
Contents

1. Introduction

2. Electric Energy Utilization in Railway Transportation

3. Utilization of Regenerative Energy

4. Other Projects in Railway Transportation

5. Conclusions
Total Energy Consumption is not Small

Energy Consumption of JR East

Total Electric Energy Consumption for Railway Transportation

(JR East)
about 5TWh/year

(Railway Total)
18.073TWh/year
(2009 FY)

= 1.6%
of total electric energy in Japan
d.c. Traction Power Supply System

- 1.5kV d.c. for trains and 6.6kV a.c. for station and signaling.
- Interval Length of traction substations is about 3-5km around city area and about 10km in country side.
d.c. Traction Load Curves

Current (A) (at 1.5kV d.c.) (average values per minute)

Time
Contents

1 Introduction

2 Electric Energy Utilization in Railway Transportation

3 Utilization of Regenerative Energy

4 Examples of Other Projects

5 Conclusions
What is regenerative power?

- Regenerative power is utilized by the other powering train simultaneously.
- Inverse power flow from d.c. to a.c. is impossible by diode rectifier.
- Residual regenerative power is canceled and kinetic power is dispersed as heat.

Ex. 1000A, 2km at most
What is regenerative power?

Assumption:
10 cars (25-30t/car)
150 passengers/car
90km/h

Kinetic energy
25m/s, 376t
= 117MJ = 33kWh

Electric energy and power
13kWh, 1568kW

Assumption:
Utilization ratio 40%
Regeneration time 30s
- Tie feeding between upward and downward feeders
- Regenerative inverter
- Self-commutation (PWM) inverter
- Energy Storage system (ESS)
Tie-feeding

- Upward feeder and downward feeder are connected in the middle of traction substations.

- Opportunities to utilize regenerative power increase.

- JR West reported about 3.4% energy saving in suburban line.
• Regenerative power is converted from d.c. 1.5kV to a.c. 6.6kV and utilized at station or signaling system.

• Realized since 1970’s
• Function of regenerative inverter is combined to conventional diode rectifier.

• Realized in 2005 at TSUKUBA Express Line.

• They have started selling electricity from regenerative energy since December in 2013.
Energy storage system

- First Lithium-ion battery in 2006 by JR West for compensation for voltage drop.

- Storage medium: Lithium-ion battery, Ni-MH battery, Electric double layer capacitor
General requirement for energy storage system for regenerative energy utilization

<table>
<thead>
<tr>
<th>Electric power:</th>
<th>500kW – 2MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage capacity:</td>
<td>10kWh – 400kWh</td>
</tr>
<tr>
<td>Voltage:</td>
<td>d.c. 1.5kV (or 750V)</td>
</tr>
</tbody>
</table>

Price of battery decreases drastically and application of ESS to traction PSS is promoted during last a few years.
More than 10 energy storage systems have already installed in d.c. 1.5kV or d.c. 750V traction PSS (power supply system)
Purpose of ESS in d.c. traction PSS

- **Compensation for voltage drop**: MW order electric power transmission causes large voltage drop.
 - JR West, Tobu Railway etc.

- **Avoiding regenerative brake cancelation**: Large voltage drop causes regenerative brake cancelation.
 - Seibu Railway, Kobe City, Kagoshima City etc.

- **Utilization of regenerative energy**: Canceled power was conventionally lost as heat generation at brake friction pad.
 - JR East

- **Emergency power supply**: D.c. traction power can be supplied even when black out of utility company happens.
 - Tokyo Monorail
Practical installation of Li-ion battery at Haijima SS in 2013 and Okegawa SS in 2014.

Energy saving effect of ESS

Haijima SS
400MWh/year

Okegawa SS
700MWh/year
Effect of Energy Storage System at OKEGAWA

After installation (2014/3/25-2014/9/30)
Effect of Energy Storage System at HAIJIMA

Reduction ratio to total traction energy of HAIJIMA SS
Contents

1. Introduction
2. Electric Energy Utilization in Railway Transportation
3. Utilization of Regenerative Energy
4. Examples of Other Projects
5. Conclusions
Railway Static Power Conditioner (RPC)

Railway is single phase load and causes three phase unbalance in grid.

By introducing RPC, three phase unbalance problem is solved by ac/dc/ac link.
All electric power are supplied from PV system on the sunny day from 78kW, 500m² PV panel and 240kWh Lithium-ion battery.

During the daytime, residual power is stored at Li-ion battery.

During the night, station power is supplied from stored battery.
Rooftop PV System at TOKYO Station

453kW, 3846m², 300MWh/year
KEIYO Depot “Mega-Solar Plant”

1050kW, 6600m², 1000MWh/year

To SHIN-NARASHINO Station (for TOKYO)

To KAIHIN-MAKUHARI Station (for CHIBA)

PV Panels

KEIYO Depot

KEIYO Line

KEIYO Depot

PV Panels
Comparison between ESS and PV

<table>
<thead>
<tr>
<th></th>
<th>Energy Storage System for Regenerative Power</th>
<th>Photovoltaic System around Railway Premises</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAIJIMA SS</td>
<td>OKEGAWA SS</td>
</tr>
<tr>
<td>Capacity</td>
<td>78kWh, 2000kW</td>
<td>137kWh, 2000kW</td>
</tr>
<tr>
<td>Effect</td>
<td>400 MWh/year</td>
<td>700 MWh/year</td>
</tr>
<tr>
<td>Area</td>
<td>100m²</td>
<td>100m²</td>
</tr>
<tr>
<td>CO₂ Reduction / Cost (normalized)</td>
<td>1.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>
• Started operation on March 2014 at KARASUYAMA Line.
• 190kWh on-board Li-ion battery.
Contents

1 Introduction
2 Electric Energy Utilization in Railway Transportation
3 Utilization of Regenerative Energy
4 Examples of Other Projects
5 Conclusions
Integration potential in railway transportation area?

- Electric railway is unstable and unbalanced load.
- Changing regenerative energy is utilized within d.c. traction power supply system now.

Possibility

- On ground energy storage system can realize peak cut of changing traction load and may contribute to stabilization of power grid in the future.
- Reduction of system cost, not battery cost, will be a key in the future for more introduction.
New HSR from NAGANO to KANAZAWA

will start operation in March 2015

Thank you indeed for kind attention!